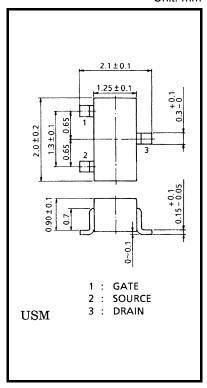


SSM3K04FU

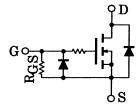

Unit: mm

- With built-in gate-source resistor: $RGS = 1 M\Omega$ (typ.)
- 2.5 V gate drive
- Low gate threshold voltage: $V_{th} = 0.7 \sim 1.3 \text{ V}$
- Small package

Absolute Maximum Ratings (Ta = 25°C)

Characteristics	Symbol	Rating	Unit
Drain-source voltage	V_{DS}	20	V
Gate-source voltage	V _{GSS}	10	V
DC drain current	ID	100	mA
Drain power dissipation	P _D	100	mW
Channel temperature	T _{ch}	150	°C
Storage temperature range	T _{stg}	-55~150	°C

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings.


Weight: 0.006 g (typ.)

Please design the appropriate reliability upon reviewing the TY Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Marking

Equivalent Circuit

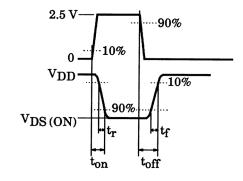
Electrical Characteristics (Ta = 25°C)

SSM3K04FU

Characteristics		Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage curre	ent	I _{GSS}	V _{GS} = 10 V, V _{DS} = 0	_	_	15	μА
Drain-source brea	kdown voltage	V (BR) DSS	$I_D = 100 \ \mu A, \ V_{GS} = 0$	20	_	_	V
Drain cut-off curre	nt	I _{DSS}	$V_{DS} = 20 \ V, \ V_{GS} = 0$	_	_	1	μА
Gate threshold vol	tage	V _{th}	V _{DS} = 3 V, I _D = 0.1 mA	0.7	_	1.3	V
Forward transfer a	dmittance	Y _{fs}	V _{DS} = 3 V, I _D = 10 mA	25	50	_	mS
Drain-source ON r	esistance	R _{DS (ON)}	I_D = 10 mA, V_{GS} = 2.5 V	_	4	12	Ω
Input capacitance		C _{iss}	$V_{DS} = 3 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	11.0	_	pF
Reverse transfer of	apacitance	C _{rss}	$V_{DS} = 3 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	3.3	_	pF
Output capacitance		Coss	$V_{DS} = 3 \text{ V}, V_{GS} = 0, f = 1 \text{ MHz}$	_	9.3	_	pF
Switching time	Turn-on time	t _{on}	$V_{DD} = 3 \text{ V}, I_D = 10 \text{ mA}, V_{GS} = 0~2.5 \text{ V}$	_	0.16	_	μS
	Turn-off time	t _{off}	$V_{DD} = 3 \text{ V}, I_D = 10 \text{ mA}, V_{GS} = 0~2.5 \text{ V}$	_	0.19	_	
Gate-source resistor		R _{GS}	V _{GS} = 0~10 V	0.7	1.0	1.3	ΜΩ

Switching Time Test Circuit

(a) Test circuit


 $\begin{array}{cc} OUT & VDD = 3 V \\ \longrightarrow & D.U. \leq 1\% \end{array}$

 $V_{IN}: t_r, t_f < 5 \text{ ns}$ $(Z_{out} = 50 \Omega)$ COMMON SOURCE

 $Ta = 25^{\circ}C$

(b) V_{IN} V_{GS}

 $\begin{array}{cc} \text{(c)} & V_{\text{OUT}} \\ & V_{\text{DS}} \end{array}$

